Table of Contents

Biotechnology Training Program Administration.................................2

History and Overview...3

Course Requirements (Table I)...4

Minimal Course Requirements (Table II)..4

Typical Curriculum (Table III)...7

Lab Requirements and Rotations...7

Industrial Internship (Table IV)...8

Research Opportunities..9

Faculty by Research Thrust...10

IDP...11

Biotechnology Training Program Faculty...12
BIOTECHNOLOGY TRAINING PROGRAM

PROGRAM DIRECTORS

Martin L. Yarmush
Ann M. Stock

EXECUTIVE COMMITTEE

Henrik Pedersen
Martin Grumet
Peter Lobel
Martin Yarmush
Francois Berthiaume
Stavroula Sofou
Lawrence Williams

ADMISSION COMMITTEE

Bonnie Firestein
Henrik Pedersen
David Shreiber
Ann Stock
Kathryn Uhrich

INDUSTRIAL LIASON COMMITTEE

Ioannis Androulakis
Susan Engelhardt
Rene Schloss
Patrick Sinko

STUDENT REVIEW COMMITTEE

Paul Copeland
Joseph Marcotrigiano
Prabhas Moghe
William Welsh
Humble Beginnings

Rutgers, the State University of New Jersey, was chartered in New Brunswick in 1766 as Queen’s College, the eighth institution of higher learning to be founded in the thirteen colonies. Renamed Rutgers College in 1825, it became the land-grant college of New Jersey in 1864, attained university status in 1924 and was designated the state university of New Jersey in 1945. Most recently in 2013, 7 schools of the University of Medicine and Dentistry of New Jersey became part of Rutgers increasing the student population to more than 65,000 students and the overall budget to nearly $4 billion. Today, Rutgers is among the top 25 research universities in the nation, a member of the prestigious Association of American Universities, and the Big Ten conference.

In the 1980s, the state of New Jersey strengthened its commitment to science and technology with the passage of two major state bond issues benefiting higher education and the formation of the New Jersey Commission on Science and Technology. Rutgers was a major beneficiary of these initiatives, which resulted in unprecedented growth in faculty and facilities. As part of this growth, numerous distinguished scholars were added to the faculty and several new advanced technology research centers were formed. The new centers have consolidated the university’s partnership with New Jersey’s chemical, pharmaceutical and high-technology industries, thus offering expanded resources and research opportunities.

The Rutgers Biotechnology Training Program was established in 1989. Selected by the National Institutes of Health in 1990 to receive one of the first nine pre-doctoral training grants for biotechnology nationwide, the program offers individually designed educational, research, and internship opportunities to students pursuing doctoral degrees in a variety of related scientific disciplines. Growth and research synergies in medical biotechnology at Rutgers were further propelled by: 1) the establishment of the Center for Advanced Biotechnology and Medicine and the expansion of the Waksman Institute in the late 1980s, 2) the establishment of the Cancer Institute of New Jersey in the 1990s, and 3) the Rutgers "Renaissance in Bioengineering" supported by the Whitaker Foundation and several state and federal agencies from 2001-09.

Program Objective

The PhD Training Program in Biotechnology at Rutgers, The State University of New Jersey was established in 1989. It is one of the select group of such programs throughout the country funded by the National Institute of General Medical Sciences of the National Institutes of Health (NIH). The 2016-17 year marks the 27th year of continuous NIH funding.

The aim of the program is to train a new breed of creative investigators who are able to translate basic science discoveries into technology developments for the needs of society, government, and industry. Students in the program; (1) become well-educated within a single biotechnology-related discipline (e.g. biochemistry, chemical engineering, molecular biology); (2) become fluent in the language, approaches and principles of the biological, chemical and physical sciences, in general; and (3) recognize the steps needed to take basic science discoveries and translate them into tools and technologies that benefit patient care, and mankind, in general.

The program is looking to produce skilled investigators and leaders for three different types of
research careers: academia, large conventional industry, and the start-up environment.

Applying To Our Biotechnology Training Program

Before applying to the Biotechnology Training Program, a student must have gained admission to a life science, physical science, or quantitative science department at Rutgers University. Undergraduate training should include: biological science, general and organic chemistry, physics and calculus. A course in physical chemistry is also highly recommended. Selection to the training program is based on scholastic record as indicated by undergraduate and graduate grade point averages (GPA), Graduate Record Examination (GRE) scores, previous research experience, letters of recommendation, and other pertinent criteria such as an indication of leadership potential. A student must be a United States citizen or permanent resident to gain admission to the program. Entering students and those who are about to complete one year of graduate study are encouraged to apply. Students who are about to complete 2 years of graduate study may also apply, especially if they have taken some of the Biotech program required courses and participated in Biotech program activities during their first 2 years.

Rutgers University is an Equal Opportunity/Affirmative Action Institution. Minorities and Woman are especially encouraged to apply.

Additional information regarding the Biotechnology Training Program can be obtained by calling, or emailing Mary Ellen Presa, Biotechnology Training Program at: Rutgers University, Department of Biomedical Engineering, 599 Taylor Road, Room 231C, Piscataway, NJ 08854; (848) 445-6530 empresa@rci.rutgers.edu

Course Requirements

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Cellular Biology</td>
<td>3</td>
</tr>
<tr>
<td>Biophysical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Bioengineering or Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>Ethical Scientific Conduct</td>
<td>1</td>
</tr>
<tr>
<td>Required Courses in Graduate Discipline</td>
<td>0-12</td>
</tr>
<tr>
<td>Bioengineering in the Biotechnology and Pharmaceutical Industries</td>
<td>3</td>
</tr>
<tr>
<td>Innovation and Entrepreneurship for Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>Topics in Advanced Biotechnology</td>
<td>10</td>
</tr>
<tr>
<td>Laboratory Rotations</td>
<td>2</td>
</tr>
<tr>
<td>Graduate Research</td>
<td>39-48</td>
</tr>
<tr>
<td>Total Credit Hours (Minimum)</td>
<td>72</td>
</tr>
</tbody>
</table>

Required Courses

Topics in Advanced Biotechnology I: After the Biotech Program fall orientation which takes place the last week in August, students and faculty meet biweekly during the fall semester for the Topics course. This forum introduces the new students to research opportunities within the program and allows advanced students to sharpen their presentation skills by providing an experienced audience to critique their work. Students who do not have ongoing work to describe
may present a recent paper from the literature which is chosen in consultation with the faculty/student group.

Topics in Advanced Biotechnology II: This course is one of the primary unifying threads of the Program. It occurs biweekly during each spring semester (for 2-3 hour sessions), and all students in the training program (those currently supported as well as those who were supported in the past) are required to attend. The course serves as a forum to: 1) highlight and unify ongoing biotechnology research on campus, 2) introduce emerging new areas of biotechnology to students and faculty, and 3) provide trainees with insight into the technological development of basic discoveries. Faculty guide students in the choice of literature articles that they will present. Critical analysis of data, its interpretation and implications are highlighted, and special attention is paid to applied research, technology-oriented issues, ethical considerations, and policy-oriented issues in the subject area. In this regard, invited investigators from industry play a key role. By having students enroll in the course during their entire graduate career (every spring semester), it is possible to involve advanced students in the selection of topics and seminar speakers (including the responsibility for organizing speakers) and to encourage their interaction with scientists from outside institutions.

Bioengineering in the Biotechnology and Pharmaceutical Industries: The goal of this course is to offer students insight into the practical aspects of industrial bioprocessing. Industrial practitioners from various fields of expertise provide lectures and facilitate discussions highlighting problems and issues that engineers and scientists encounter. Topics vary from year to year but always include: drug discovery, drug metabolism, microbial fermentation and mammalian cell culture optimization and scale-up, monoclonal antibody, vaccine and gene therapy production, downstream purification, drug delivery, formulation, regenerative medicine, stem cell culture, tissue engineering, cellular therapies, regulatory considerations, manufacturing challenges, and clinical research. This course provides students with exposure to topics which are beyond the scope of a purely theoretically-structured course. After taking this course, students have a much better understanding of the challenges that engineers and scientists face in industrial bioprocessing.

Innovation and Entrepreneurship for Science and Technology: This course introduces and outlines the fundamentals of “technology entrepreneurship” and introduces a framework for identification of high-potential, technology-intensive, commercial opportunities, gathering required resources (human and financial), and maturing the innovation to a commercializable product. The course places a specific focus on commercialization derived from scientific and technological research with special emphasis on biotechnology and the life science industry. The course is led by Susan Engelhardt and Martin Yarmush with guest lecturers from industry and academia. The course objective is to have students complete the class with: 1) an understanding of the major components of the life cycle from research to innovation to commercialization, 2) knowledge of the many ways that innovation manifests itself, in the context of start-up, corporate, social and public sector concerns, 3) practical methods to intelligently and objectively evaluate potential commercialization opportunities, and 4) a framework within which to consider the ethical issues that are intertwined with entrepreneurial activities. Through the collection of lectures and projects, students build upon the following critical skills for entrepreneurial success: 1) opportunity evaluation, 2) strategic thinking, 3) teamwork, 4) art of selling, persuasion and motivation, oral and written communication, basics of start-up legal concepts, basics of startup finance and accounting. This course was developed in response to student demand.
An additional credit hour must be taken in the area of “Ethics in Science”.

Representative Courses

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular and Cellular Biology</td>
<td>Fundamentals of Molecular Genetics</td>
</tr>
<tr>
<td></td>
<td>Advanced Cell Biology</td>
</tr>
<tr>
<td></td>
<td>Biochemistry (Proteins)</td>
</tr>
<tr>
<td></td>
<td>Biochemistry (Molecular Biology)</td>
</tr>
<tr>
<td></td>
<td>Developmental Biology</td>
</tr>
<tr>
<td></td>
<td>Immunology: Cellular and Molecular</td>
</tr>
<tr>
<td></td>
<td>Cellular and Molecular Pharmacology</td>
</tr>
<tr>
<td>Biophysical Chemistry</td>
<td>Macromolecular Structure, Design and Eng</td>
</tr>
<tr>
<td></td>
<td>Biophysical Chemistry I</td>
</tr>
<tr>
<td></td>
<td>Biophysical Chemistry II</td>
</tr>
<tr>
<td></td>
<td>Biointerfacial Characterization</td>
</tr>
<tr>
<td></td>
<td>Nano and Microengineered Interfaces</td>
</tr>
<tr>
<td></td>
<td>Enzymes and Proteins</td>
</tr>
<tr>
<td></td>
<td>Protein Engineering and Design</td>
</tr>
<tr>
<td>Bioengineering of Quantitative Science</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td></td>
<td>Fundamental of Large Scale Fermentation</td>
</tr>
<tr>
<td></td>
<td>Bioseparations</td>
</tr>
<tr>
<td></td>
<td>Biopolymers</td>
</tr>
<tr>
<td></td>
<td>Tissue Engineering I: Fundamentals II: Applications</td>
</tr>
<tr>
<td></td>
<td>Stem Cell Biology and Bioengineering</td>
</tr>
<tr>
<td></td>
<td>Quantitative Techniques for Biological Science</td>
</tr>
<tr>
<td></td>
<td>Introduction to Molecular Modeling</td>
</tr>
<tr>
<td>Ethics</td>
<td>Ethical Scientific Conduct</td>
</tr>
</tbody>
</table>

In addition to these course requirements, each individual must fulfill the requirements set by their respective graduate program. Individuals receiving financial support from the program must maintain a 3.5 GPA; and show adequate progress toward their Ph.D. degree. A progress report is required from each student at the end of each semester. The biotechnology training program provides a stipend and tuition support for up to 2 years. During the remaining time, students are supported through research grants of their thesis advisors. Students who are supported by program funds must complete all the necessary forms prior to receiving financial support.
Typical Curriculum

TABLE III

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>3 courses</td>
</tr>
<tr>
<td></td>
<td>1-2 Lab Rotations</td>
</tr>
<tr>
<td></td>
<td>Ethical Scientific Conduct</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Seminar</td>
</tr>
<tr>
<td>Spring</td>
<td>3 courses</td>
</tr>
<tr>
<td></td>
<td>Topics in Advanced Biotechnology</td>
</tr>
<tr>
<td></td>
<td>Bioengineering in the Biotechnology and Pharmaceutical Industries</td>
</tr>
<tr>
<td>Summer</td>
<td>Industrial Internship</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>1-2 Courses</td>
</tr>
<tr>
<td></td>
<td>Innovation and Entrepreneurship for Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Thesis Proposal Preparation</td>
</tr>
<tr>
<td></td>
<td>Bioengineering Seminar</td>
</tr>
<tr>
<td>Spring</td>
<td>1-2 Courses</td>
</tr>
<tr>
<td></td>
<td>Topics in Advanced Biotechnology</td>
</tr>
<tr>
<td></td>
<td>Thesis Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD THROUGH FIFTH YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis Research</td>
</tr>
<tr>
<td>Topics in Advanced Biotechnology</td>
</tr>
<tr>
<td>Bioengineering Seminar</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

Laboratory Requirements

In addition to the extensive array of courses available at Rutgers, the program requires two types of laboratory based learning opportunities for students prior to initiation of their doctoral dissertation research.

Academic Laboratory Rotations

The goal of the academic laboratory rotation is to acquaint students with the techniques and principles of biotechnology and to give the student this opportunity to work with different faculty members before choosing a dissertation advisor. This is especially important in an interdisciplinary...
program with a broad range of research opportunities. The trainees in the Biotechnology Program will be independent of departmental or research grant support and allowed maximum flexibility in their choice of research area. Direct experience can correct or affirm previous perceptions and give a preliminary assessment of how a student and potential mentor will interact with one another. Each student is expected to spend 6-7 weeks in the laboratories of 2-3 different members of the biotechnology faculty before selecting a dissertation advisor. Students are encouraged to take their rotations in different areas. Students will choose their rotations in consultation with the co-directors, as well as their particular graduate program director. At the end of each rotation the students submit a written summary of their work, and the faculty members give an appraisal of the work. The report is kept in the student’s files as a record of their accomplishments. Students may opt out of this requirement if they have extensive prior laboratory experience.

Summer Industrial Internship Program

The purpose of this program is to provide an opportunity for the students to gain access to industrial facilities and become more aware of the “gestalt” and practice of industrial research and development. At a minimum, students spend eight weeks full time at an industrial site under the guidance of a particular industrial investigator. These experiences may, on occasion, lead to the involvement of an industrial mentor on the student’s dissertation committee. Students who have prior extensive industrial experience may elect to opt out of this requirement; but many of these students still wish to do rotations in different fields. We are extremely fortunate to have a tremendous variety of experiences available. Two key individuals coordinate the program: Dr. Rene Schloss, a Senior Research Associate in Biotechnology, who works primarily with large companies, and Susan Engelhardt, Executive Director of the Center for Innovative Ventures of Emerging Technologies (who has access to both large and small companies). Among the Biotechnology Program’s Industrial partners are: Amicus Therapeutics, Celgene Therapeutics, Colgate Palmolive, GE Healthcare, J&J Ethicon, Kessler Rehabilitation, Life Cell Corporation, Linguaflex, Merck & Co., Siemens, and Stryker Orthopaedics. Most of these major industrial sites are within daily commuting distance from the university and some recent examples of internships are listed below. The industrial rotation is usually completed during the first summer after the trainees’ first academic year. Students may opt out of this requirement if they have extensive prior industrial experience.

Representative Industrial Internship Projects

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>DEPT/ADVISOR</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Browe</td>
<td>Biomedical Engineering Joseph Freeman</td>
<td>Merck</td>
</tr>
<tr>
<td>Trevan Locke</td>
<td>Chemical and Biochemical Eng Stavroula Sofou</td>
<td>Merck</td>
</tr>
<tr>
<td>Jake Jacobs</td>
<td>Molecular Biology and Biochemistry Mikel Zaratiegui</td>
<td>Celgene</td>
</tr>
<tr>
<td>Brittany Taylor</td>
<td>Biomedical Engineering Joseph Freeman</td>
<td>Celgene</td>
</tr>
</tbody>
</table>
Research Opportunities

Students can choose their PhD dissertation project from a wide variety of research topics. These topics fall into two core thrust areas as listed below.

Genomics, Proteomics and Structural Biology: The past few decades have seen great technical advances in molecular and cell biology that have led to the development of new therapeutics and diagnostics which will have a profound impact on medicine for years to come. With the Human Genome Project complete, a massive effort is being undertaken to build from the molecular level in a step-wise fashion all the way to complex behavior and function. This effort will require further discovery and analysis of biological systems together with integration of high throughput and genetic manipulation technologies in experimental biology, sophisticated data management and statistical analysis techniques from mathematics and computer science, and systems modeling and fabrication tools from engineering. Every major pharmaceutical company is currently invested heavily in “post-genome” technologies, and numerous biotechnology companies have been created in areas such as Genomics, Proteomics, and Systems Biology. Genomics-based products and technologies are estimated to exceed $50 billion by 2015. Faculty in this research area are involved in a multiplicity of endeavors and projects. These include: 1) new vector development, 2) identification and cloning of new transcription factors, 3) mRNA processing and microRNA biology, 4) translation, posttranslational modification, protein trafficking, and secretion, 5) macromolecular structure determination and protein engineering, 6) new tools for functional genomics, 7) systems biology, metabolic engineering, and gene network analysis, 8) environmental control of cell growth, protein production 9) engineering principles and scale-up of plant cell and animal cell culture, and 10) new tools for functional genomics.

Tissue Engineering, Regenerative Medicine, and Drug Delivery: Without question, one of the most fertile biotechnological areas for the development of new and innovative medical therapies for the next century lies in the realm of regenerative medicine and tissue engineering. Given the remarkable advances in fundamental understanding of the functions and behaviors of cells and tissues over the past few decades, we are poised in the beginning of the 21st century to translate this basic knowledge into vast improvements in the practice of medicine. By combining basic science, engineering problem-solving and clinical wisdom, age-old handicaps that used to devastate people's lives - blindness, deafness, paraplegia, organ dysfunction and failure, memory loss, and even death - may be circumvented by cell transplants, advanced drug delivery systems, intelligent prostheses, neural implants, artificial organs, and natural organs regrown after injury or disease. In addition to the latter, we foresee that cell and tissue-based integrated systems will, in the not-too-distant-future, become pharmaceutical industry standards for early and late stages of drug discovery and drug testing, in the same manner that combinatorial approaches have revolutionized early steps of drug synthesis and discovery. Finally, the NIH estimates that the current world market for replacement organ therapies is in excess of $350 billion, and the projected U.S. market for regenerative medicine is estimated at $100 billion. Faculty in this research area are: 1) investigating basic cellular and tissue phenomena, 2) developing new biomaterials, 3) investigating approaches for stem cell differentiation, and 4) developing methods and materials for the construction of functional tissue and organ substitutes, 5) developing devices that can support biological cells and tissues, 6) studying environmental control of cell growth, 7) investigating engineering principles and scale-up of stem cells, and 8) developing advanced methodology for drug delivery including targeted means and nanopharmaceuticals.
GENOMICS, PROTEOMICS, AND STRUCTURAL BIOLOGY

Ioannis Androulakis Sunita Kramer
Eddy Arnold Ki-Bum Lee
Joseph Bertino Peter Lobel
Helen Berman Kiran Madura
Sam Bunting Joseph Marcotrigiano
Stephen Burley Joachim Messing
Paul Copeland James Millonig
Justin Drake Guy Montelione
Monica Driscoll Vikas Nanda
Richard Ebright Ann Stock
Marianthi Ierapetritou William Welsh
Estella Jacinto Eileen White
Sagar Khare Lawrence Williams
Mikel Zaratiegui

TISSUE ENGINEERING AND DRUG DELIVERY

Francoise Berthiaume Henrik Pedersen
Helen Buettner Charles Roth
Li Cai David Shreiber
Bonnie Firestein Stavroula Sofou
Joseph Freeman Patrick Sinko
Martin Grumet Jay Sy
Prabhas Moghe Martin Yarmush
Fernando Muzzio Jeff Zahn
Ronke Olabisi
Individual Development Plan (IDP)

NIH encourages use of IDPs for all trainees and requires that grant progress reports include a description of IDP

Goals of IDPs

The IDP helps individuals identify:

– Long-term career options they wish to pursue and the necessary tools to meet these
– Short-term needs for improving current performance.

The IDP process aims to:

– Assist in developing long-term goals;
– Assist in developing short-term goals that provide a clear sense of expectations;
– Assist in identifying milestones along the way to achieving specific objectives; and
– Provide a tool for communication between the trainee and faculty mentor.

Biotechnology Program IDP Requirement

• Each fall semester, trainees complete the IDP form and update their CVs (suggested format provided).

• If a trainee is required to prepare an IDP for another graduate program, the graduate program version may be submitted in place of the Biotechnology IDP.

• After completing the IDP and CV, trainees should meet with their advisors to discuss the IDP and to obtain signatures on the documentation form.

• The IDP form, the signed meeting documentation form, and an up-to-date CV should be submitted as pdf files by December 1 through the Assignments section of the Biotechnology Training Program site on Sakai.

• Students in their 1st year of graduate school should read the IDP, but are not required to complete it. An updated CV is required for all students.
JOANNIS ANDROULAKIS
PhD, Purdue University
Professor
Biomedical Engineering Department
Chemical & Biochemical Engineering Department

Phone: 848-445-6561 599 Taylor Road
Fax: 732-445-3753 Room 212
E-mail: yannis@rci.rutgers.edu Piscataway, NJ 08854

Computational Systems Biology
Dr. Androulakis actively pursues research activities in the area of Systems Biology, loosely defined as an integrative modeling and experimental framework that approaches biological entities as “systems” in the physical and engineering sense. Of particular interest are issues related to “functional physiomics” in an attempt to establish functional links between cellular events, such as signaling, transcription and translation, and an expanding envelope of interactions which include the bidirectional links between cells, tissues, organs, environmental signals and physiological responses. The ultimate goal is to develop in silico methodologies that will enable translational research by elucidating putative mechanistic interventions. Of particular importance are the opportunities of such an integrative approach applied to the inflammatory responses due to the critical role inflammation plays in a number of physiologically and clinically relevant situations. His work integrates a compendium of experimental systems, from cell cultures, to animal models, to human studies in order to address different questions at their appropriate level of detail.

EDWARD ARNOLD
PhD, Cornell University
Board of Governors Professor, Distinguished Professor
Department of Chemistry and Chemical Biology

Phone: 732-235-5323 679 Hoes Lane
Fax: 732-235-5788 Room 106
E-mail: arnold@cabm.rutgers.edu Piscataway, NJ 08854

HIV. AIDS. drugs. vaccines. crystallography. structural biology
Many of the underlying biological and chemical processes of life are being detailed at the molecular level, providing unprecedented opportunities for the development of novel approaches to the treatment, cure and prevention of human disease. A broad base of advances in chemistry, biology, and medicine has led to an exciting era in which knowledge of the intricate structure of life’s machinery can help to accelerate the development of new small molecule drugs and biomaterials such as engineered viral vaccines. Drs. Eddy Arnold and his colleagues are working to understand molecular mechanisms of drug resistance and apply structure-based drug design for the treatment of serious human diseases. In pursuit of these goals, the laboratory uses research tools from diverse fields, including X-ray crystallography, molecular biology, virology, protein biochemistry, and macromolecular engineering. Eddy’s team of very experienced and gifted coworkers is the driving force behind the continuing progress.
HELEN M. BERMAN

PhD, University of Pittsburgh
Distinguished Professor, Board of Governors Professor
Department of Chemistry and Chemical Biology

Phone: 848-445-4667
Fax: 732-445-4320
E-mail: berman@rcsb.rutgers.edu

610 Taylor Road
Room 113
Piscataway, NJ 08854

Structural bioinformatics, structural biology

As a founding member of the Worldwide Protein Data Bank (wwPDB) collaboration, we support scientific research and education by providing the essential Protein Data Bank (PDB) archive of information about the experimentally-determined structures of proteins, nucleic acids, and complex assemblies. The wwPDB organization ensures that the PDB is freely and publicly available to the global community. Members host deposition, annotation, and distribution centers for PDB data and collaborate on a variety of projects and outreach efforts, including developing tools and processes for validating and remediating structural data.

FRANCOIS BERTHIAUME

PhD, Pennsylvania State University
Associate Professor
Department of Biomedical Engineering

Phone: 848-445-6566
Fax: 732-445-3753
E-mail: fberthia@rci.rutgers.edu

599 Taylor Road
BME 217
Piscataway, NJ 08854

Metabolic and Tissue Engineering

My research area encompasses Metabolic and Tissue Engineering. In the former, we are developing a systems biology framework to characterize and treat the metabolic derangements of disease. Cellular metabolism occurs within a complex network of chemical reactions, is regulated at multiple levels (metabolites, proteins, genes and so on), and therefore therapies require a combination of approaches to simultaneously address multiple targets. To identify these targets, we gather large sets of metabolic data from disease models and combine them with mass balance analysis methods to generate a comprehensive map of the metabolic changes within the major metabolic pathways induced by disease. We also work with collaborators to link these observations to gene expression data to elucidate the underlying mechanisms responsible for the changes. This information provides a rational basis to develop multi-pronged therapies. We apply this framework in the context of two different applications: metabolic abnormalities associated with complex diseases, such as adult-onset diabetes, cancer, trauma, and so on, and metabolic reconditioning of organs that are rejected from the donor pool. In the area of Tissue Engineering, our focus is to develop methods that attract stem cells to a site of injury in order to promote faster wound healing and reduced scarring. It is known that adult stem cells, some of which coming from the bone marrow, naturally have the capacity to home into injured areas of the body where they grow and differentiate to form new tissue. Our goal is to elucidate this mechanism and to develop methods that enhance it using a combination of implantable polymeric scaffolds and stem cell attracting agents. We are specifically interested to use this strategy for improving the healing of skin wounds, in particular deep skin wounds that are susceptible to infection and scarring, as well as non-healing and chronic wounds, such as diabetic ulcers, venous ulcers, and bed sores.
JOSEPH BERTINO
Ph.D., University of Pennsylvania
Chief Scientific Officer, Medical Oncologist
Rutgers Cancer Institute

Phone: 732-235-8510 195 Little Albany St
Fax: 732-235-8181 Room 3033
E-mail: bertinoj@cinj.rutgers.edu New Brunswick, NJ 08903

Cancer Pharmacology and Pre-clinical Therapeutics Program

Since coming to The Cancer Institute of New Jersey in 2002, I have collaborated with top experts in the field to help develop the latest generation of cancer treatments. I have had a special research interest in developing new drugs and understanding why drugs work or don’t work, and I am currently exploring new treatments for one type of lymphoma, namely T-Cell lymphoma. By having the resources available that can only be found at a National Cancer Institute-designated Comprehensive Cancer Center, our team is able to translate these research findings and directly apply them to patient therapies.

SAMUEL BUNTING
Ph.D, University of Cambridge
Assistant Professor
Molecular Biology and Biochemistry

Phone: 732-235-5333 679 Hoes Lane
Fax: 732-235-5318 CABM Room 337
E-mail: bunting@cabm.rutgers.edu Piscataway, NJ 08854

Cell survival and DNA repair in mammals

Healthy cell growth depends on the ability to properly repair DNA damage, but the outcomes of the DNA damage response can vary greatly. Some cells repair damage and continue growing normally, while other cells suffer apoptosis, senescence or become malignant cancer cells. The biological reasons for these differing responses are not always clear, but the consequences in terms of health (especially in aging and cancer) are profound. The goal of our research program is to show why different cells respond differently to stress, with the goal of reprogramming cells so that they repair damage in an advantageous way.

STEPHEN BURLEY
Ph.D, University of Oxford
MD, Harvard Medical School
Distinguished Professor
Center for Integrative Proteomics Research

Phone: 848-445-5144 174 Frelinghuysen Rd
Fax: 732-445-4320 Piscataway, NJ 08854
E-mail: sburley@proteomics.rutgers.edu

Cell Death and Survival Signaling Program

Stephen Burley is an expert in structural biology and proteomics, structure/fragment based drug discovery, and clinical medicine/oncology. Burley currently serves as the Director of the Center for Integrative Proteomics Research and as a Professor in the Department of Chemistry and Chemical Biology and at Rutgers, The State University of New Jersey. He is also a Member of The Cancer Institute of New Jersey.
Regulation of Gene Expression in Stem Cells

Like a double-edged sword, stem cells have the potential to develop into many different cell types for regenerative medicine, but they are also the source of at least some, perhaps all, cancers. The normal and cancerous behavior of stem cells may be determined by their unique pattern of gene expression. The Cai lab focuses on the genetic mechanisms that regulate gene expression of stem cells in both normal development and tumorigenesis. We are using integrative computational and experimental approaches to identify, verify and characterize the genetic regulatory elements, e.g., the conserved non-coding DNA sequences and their interacting protein factors that involved in the regulation of stem cell gene expression. A thorough understanding of these mechanisms will provide the knowledge of stem cell development into various normal cell types as a repair system for the body, as well as a basis for the therapeutic treatments of cancers.

Regulation of gene expression at the translational level, incorporation and utilization of selenocysteine

Our primary research question targets the protein synthetic machinery as one of the primary sites for the regulation of gene expression and an important sensor of the status of cellular metabolite concentrations. The utilization of selenium exemplifies this relationship, and is required for the synthesis and function of an essential group of proteins that contain the amino acid selenocysteine (Sec). In fact, many selenoproteins are known to provide protection from cellular damage and transformation, thus making the synthesis and regulation of these proteins an essential area of research. Sec is incorporated into these proteins by a translational recoding event at specific Stop (UGA) codons that are found upstream of stable stem-loop structures known as Sec insertion sequence (SECIS) elements. While the UGA codon and the SECIS element are the only known cis-acting elements required for Sec incorporation, at least two trans-acting factors are also required: 1) the Sec-specific elongation factor (eEFSec) and 2) a SECIS binding protein (SBP2). One of the ultimate goals for selenocysteine research is to be able to specifically regulate the expression of potentially beneficial selenoproteins in vivo. In order to achieve this goal, we must understand all of the factors that contribute not only to the basic Sec incorporation reaction but also to the regulation of this process. In addition to characterizing the structure and function of the known factors, much of our work is designed to test hypotheses regarding the identity and function of novel factors involved in the synthesis of selenoproteins utilizing both mammalian systems and plant-based systems.
JUSTIN DRAKE
PhD, University of Iowa
Assistant Professor
Department of Medicine
Phone: 732-235-7017
Cancer Institute of NJ
E-mail: justin.drake@cinj.rutgers.edu
1965 Albany St
New Brunswick, NJ 08901

Regulation of gene expression at the translational level, incorporation and utilization of selenocysteine

Our primary research question targets the protein synthetic machinery as one of the primary sites for the regulation of gene expression and an important sensor of the status of cellular metabolite concentrations. The utilization of selenium exemplifies this relationship, and is required for the synthesis and function of an essential group of proteins that contain the amino acid selenocysteine (Sec). In fact, many selenoproteins are known to provide protection from cellular damage and transformation, thus making the synthesis and regulation of these proteins an essential area of research. Sec is incorporated into these proteins by a translational recoding event at specific Stop (UGA) codons that are found upstream of stable stem-loop structures known as Sec insertion sequence (SECIS) elements. While the UGA codon and the SECIS element are the only known cis-acting elements required for Sec incorporation, at least two trans-acting factors are also required: 1) the Sec-specific elongation factor (eEFSec) and 2) a SECIS binding protein (SBP2). One of the ultimate goals for selenocysteine research is to be able to specifically regulate the expression of potentially beneficial selenoproteins in vivo. In order to achieve this goal, we must understand all of the factors that contribute not only to the basic Sec incorporation reaction but also to the regulation of this process. In addition to characterizing the structure and function of the known factors, much of our work is designed to test hypotheses regarding the identity and function of novel factors involved in the synthesis of selenoproteins utilizing both mammalian systems and plant-based systems.

MONICA DRISCOLL
PhD, Harvard University
Professor
Department of Molecular Biology and Biochemistry
Phone: 732-235-7182
Nelson Biological Labs
E-mail: driscoll@dls.rutgers.edu
1965 Albany St
Room A232
Piscataway, NJ 08854

Developmental neurogenetics. molecular genetics of neuronal cell death. mechanosensory transduction in touch and feeling. molecular mechanisms of aging

One of the looming mysteries in signal transduction today is the question of how mechanical signals, such as pressure or force delivered to a cell, are interpreted to direct biological responses. A long-standing problem in the mechanotransduction field has been that genes encoding mechanically-gated channels eluded cloning efforts, resulting in a large gap in our understanding of their function. We have identified a new family of ion channels (the degenerin channels) that are hypothesized to normally function as the central mediators of touch transduction and proprioception (how the body maintains coordinated movement) in C. elegans. We are currently combining genetic, molecular and electrophysiological approaches to determine and compare the composition/regulation of mechanosensitive complexes in an effort to contribute to the understanding of the function of this newly discovered channel class.
Orthopedic injuries are extremely common, especially to the knee. However, the avascular nature of the synovial areas makes it extremely difficult for injured soft tissues to regenerate. Failure to treat these injuries can lead to injury of other soft tissues, leading to cartilage degeneration and improper weight loading. These can cause a patient pain and discomfort, creating a need for tissue engineering of orthopedic tissues. Specifically, we focus on ligament, meniscus, and articular cartilage tissue engineering.

Richard Ebright's laboratory seeks to understand structures, mechanisms, and regulation of bacterial transcription complexes and to identify, characterize, and develop small-molecule inhibitors of bacterial transcription for application as antituberculosis agents and broad-spectrum antibacterial agents.

Synaptic transmission requires spatial assembly of neurotransmitter receptors and associated signal transduction machinery at synaptic sites and the precise patterning of dendritic processes. Targeting of proteins to the synapse is a dynamic process in which there is a balance of assembly and disassembly of proteins at synaptic homeostasis. In fact, when learning occurs, recruitment of existing and newly synthesized proteins to the synapse is increased. In contrast, when disassembly of synaptic signaling molecules occurs faster than assembly, homeostasis is lost and disease states such as Alzheimer's Disease occur in which synaptic transmission is compromised. An important long-term goal of our work is to understand how synaptic targeting of proteins is perturbed in pathophysiological states.
JOSEPH FREEMAN

PhD, Rutgers University
Associate Professor
Biomedical Engineering

Phone: 848-445-6595 599 Taylor Rd
Fax: 732-445-3753 Room 317
E-mail: joseph.freeman@rutgers.edu Piscataway, NJ 08854

The Musculoskeletal Tissue Regeneration

The Musculoskeletal Tissue Regeneration (MoTR) Laboratory primarily focuses on the repair and regeneration of tissue, mainly musculoskeletal tissue, through the use of tissue engineering techniques. We also investigate mechanisms of tissue damage and healing, cancer development, and molecular modeling of structural proteins. McKeon-Fischer KD, Flagg DH, Freeman JW. Poly(acrylic acid)/Poly(vinyl alcohol) Compositions Coaxially Electrospun With Poly(e-caprolactone) and Multi-walled Carbon Nanotubes to Create Nanoactuating Scaffolds. Polymer 2011; 52: 4736-43

MARTIN GRUMET

PhD, Johns Hopkins University
Professor
Department of Cell Biology and Neuroscience

Phone: 732-445-6577 604 Allison Road
Fax: 732-445-2063 Room D251
E-mail: mgrumet@rci.rutgers.edu Piscataway, NJ 08854

Molecular and Stem Cell Therapies in Neurological Disorders

A major focus of our laboratory is on neural stem cells and mesenchymal stem cells in spinal cord injury. We have isolated rat neural stem cell clones that can promote neurite growth both in culture and in vivo. Transplantation experiments are assessing the migration patterns of neural stem cells and mesenchymal stem cells in contused rat spinal cords, and their ability to protect neural tissue against secondary damage and/or promote nerve regeneration. Cells are labeled fluorescently to facilitate their detection and are being injected into the spinal cord at the site of injury immediately after injury or in a delayed manner via lumbar puncture, which does not require spinal laminectomy. Molecular studies are in progress to understand the effects of these cells in vivo and to understand mechanisms responsible for their action.

MARIANTHI IERAPETRITOU

PhD, Imperial College
Professor and Department Chair
Chemical and Biochemical Engineering

Phone: 732-445-2971 98 Brett Road
Fax: 732-445-2581 Rm C232
E-mail: marianth@soemail.rutgers.edu Piscataway, NJ 08854

Our current work in metabolic engineering focuses on optimizing the function of liver cells in order to be utilized for bioartificial devices. Recent directions of this work include the integration of metabolic and regulatory networks as well as the analysis of the toxic effects of a variety of different substances including drugs, and environmental pollutants. Our work in this area is in collaboration with Professors Yarmush, Roth and Androulakis that bring expertise in the area of liver physiology, molecular bioengineering and bioinformatics. We also collaborate in the area of environmental toxicology with Professors Georgopoulos and Welsh from UMDNJ.
ESTELLA JACINTO
PhD, University of California
Associate Professor
Physiology and Biophysics

Research in my lab aims to understand how nutrients and growth factors control intracellular signaling pathways and how these pathways are coupled to cellular metabolism. We specifically focus on the mechanistic target of rapamycin (mTOR) signaling pathway and how it plays a role in cancer metabolism, diabetes and T cell biology. Our goal is to understand how cells rewire metabolic processes in response to genetic and environmental changes and how we can manipulate this reprogramming process to improve immunotherapy and develop more effective therapeutic strategies for cancer and other metabolic disorders. We use both mammalian cell and mouse models and employ techniques including proteomics/genomics, metabolomics, flow cytometry, biochemical and cell biology techniques.

SAGAR KHARE
PhD, University of North Carolina
Assistant Professor
Department of Chemistry and Chemical Biology

The Khare lab will seek to understand the structural determinants of enzymatic specificity and reactivity using a combination of computational protein design and experimental characterization. Our goal is to develop a quantitative and predictive understanding of specificity at protein-ligand and protein-peptide interfaces; this will inform various therapeutic and synthetic applications.

SUNITA KRAMER
PhD, State University of NY at Stony Brook,
Associate Dean of Academic Affairs
Department of Pathology and Laboratory Medicine

Vasculogenesis, or the formation of new blood vessels, is an important event, both during embryonic development and during tumor formation and growth in adult tissues. Blood vessels are essentially small tubes formed by a layer of endothelial cells enclosing a central lumen. How do groups of unorganized endothelial cells migrate to their proper location, make specific adhesive contacts, and then arrange themselves into a linear tube with a central lumen? The development of the fruit fly embryonic heart tube provides a simple and elegant in vivo model for vessel formation. Our lab utilizes a genetic and cell biological approach to explore the molecules and mechanisms underlying this process.
KI-BUM LEE

PhD, Northwestern University
Associate Professor
Department of Chemistry and Chemical Biology

<table>
<thead>
<tr>
<th>Phone: 732-445-2081</th>
<th>610 Taylor Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax: 732-445-5312</td>
<td>Room 315</td>
</tr>
<tr>
<td>E-mail: kblee@chem.rutgers.edu</td>
<td>Piscataway, NJ 08854</td>
</tr>
</tbody>
</table>

Development of Novel Approaches to Probe Biomolecular Interactions of Cells In Vitro and In Vivo

The primary research interest of our group is to develop and integrate nanotechnology and chemical biology to modulate signaling pathways in cancer and stem cells. More specifically, our research focuses on identifying the various microenvironmental cues (e.g. soluble signals, cell-cell interactions, and insoluble/physical signals) affecting stem cell and cancer cell fate and thereafter utilizing these cues for the neuro-differentiation of stem cells and apoptosis of brain tumor cells. Our group is creating new tools to better understand the roles of individual microenvironmental cues in cancer and stem cell behaviors. We are also developing novel platforms to deliver biomolecules and to control the signaling elements inside cells in a spatiotemporally controlled manner. Taken together, our work helps to lay the groundwork for the rational step-by-step emulation of cellular microenvironments using nanomaterials. We are also working towards the novel design of several nanomaterials and 3D-ECM platforms which can be responsive to external signals (e.g. light, pH, and enzymes), while leveraging our expertise to expand into several new directions. Among its nearly 15 members, our group spans many disciplines—organic, inorganic, and physical chemistry; pharmaceutical sciences; chemical and biomedical engineering; and molecular and stem cell biology.

PETER LOBEL

PhD, Columbia University
Professor
Department of Pharmacology

<table>
<thead>
<tr>
<th>Phone: 732-235-5032</th>
<th>679 Hoes Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax: 732-235-4850</td>
<td>CABM 204</td>
</tr>
<tr>
<td>E-mail: lobel@cabm.rutgers.edu</td>
<td>Piscataway, NJ 08854</td>
</tr>
</tbody>
</table>

Lysosomal proteomics, diseases, and potential therapeutics

Our laboratory has pioneered proteomic methods for disease discovery that evolved from our basic research on lysosomal enzyme targeting. Lysosomes are membrane-bound, acidic organelles that are found in all eukaryotic cells. They contain a variety of different proteases, glycosidases, lipases, phosphatases, nuclease, and other hydrolytic enzymes, most of which are delivered to the lysosome by the mannose 6-phosphate targeting system. In this pathway, lysosomal enzymes are recognized as different from other glycoproteins and are selectively phosphorylated on mannose residues. The mannose 6-phosphate serves as a recognition marker that allows the enzymes to bind mannose 6-phosphate receptors which ferry the lysosomal enzymes to the lysosome. In the lysosome, the enzymes function in concert to break down complex biological macromolecules into simple components. The importance of these enzymes is underscored by over forty different lysosomal storage disorders (e.g., Tay Sach’s disease) where loss of a single lysosomal enzyme leads to severe health problems including neurodegeneration, progressive mental retardation and early death.
Ubiquitin-mediated protein degradation in DNA repair and signal transduction

The major research focus in my laboratory is the investigation of protein ubiquitination and degradation by the proteasome. We discovered that Rad23 is a shuttle-factor that can bind ubiquitinated proteins and deliver them to the proteasome, to initiate degradation. The domains in Rad23 that bind ubiquitinated proteins and the proteasome were identified. We are using molecular, biochemical and genetic methods (in both yeast and cell-culture based systems), to understand the mechanism of intracellular proteolysis and its significance in DNA repair, stress-response and human neurodegenerative diseases.

Structure and function of hepatitis C viral proteins

Hepatitis C virus (HCV) continues to be a major public health problem. In most cases, HCV infection becomes chronic and can persist for decades, leading to cirrhosis, end-stage liver disease and hepatocellular carcinoma. Currently, 3% of the human population is infected with HCV, making virus transmission a major public health concern. In the United States, HCV infection is the most common cause of liver transplantation and results in 10,000 to 20,000 deaths a year. There is no vaccine, and current HCV therapy, pegylated interferon-alpha in combination with ribavirin, leads to a sustained response in only 50% of genotype 1-infected patients, the prevalent genotype in the United States. There are numerous side effects, causing many patients to prematurely stop treatment. Given the high prevalence of infection and poor response rate, inhibitors that specifically target HCV proteins with fewer side effects are desperately needed. In addition, an effective vaccine would greatly reduce the spread of the virus.

Expression and epigenetic modification of maize seed protein (zein) genes in oat plants with added corn chromosomes.

Thirty years ago, we developed a method called shotgun DNA sequencing, which has been used to sequence the genomes of microorganisms, animals, and plants. Recently, in collaboration with other laboratories we have sequenced the entire rice, sorghum and Brachypodium genomes as references for gene discovery and organization in cereal species. One interesting feature of the genomes of different cereal species is the enormous size variation, which is in part due to differential retro-transpositions and up to some degree due to gene amplification. An example of differential gene amplification is the seed storage protein genes in maize. Interestingly, gene amplification results in differential regulation of individual gene members, providing new clues of plant chromosomal organization and functionalization.
Dorsal CNS development. Bmp signaling. mouse mutations and autism

My lab studies dorsal CNS development by taking the unique approach of combining mouse genetics with neuroanatomy. Our goal is to identify the pathways which control the generation and differentiation of dorsal CNS neurons.

Cellular Bioengineering (Liver, Skin), Cell-Interactive Biomaterials, Micro/Nanosystems Bioengineering

The Moghe laboratory works on the development and characterization of cell-interactive biomaterials for accelerated tissue repair and stem cell-based regenerative medicine. Current projects include nanobiomaterials (‘nanolipoblockers’) for cardiovascular medicine and wound healing/skin tissue engineering; novel imaging modalities for cell-based profiling of polymeric biomaterials; design and analysis of 3-D scaffolds for controlled human embryonic stem cell expansion and differentiation.

New NMR methods development, molecular recognition, growth factors, protein

The general aim of our research is to use NMR spectroscopy as a tool for protein engineering and structural bioinformatics. We develop new methods for protein solution structure determination and apply these techniques to proteins of pharmaceutical or medical interest. The combined methods of site-directed mutagenesis, NMR spectroscopy, and conformational energy calculations are being used to (1) determine three dimensional structures of small proteins in solution, (2) determine the structures of protein-protein, protein-receptor, and protein-nucleic acid complexes, (3) characterize effects of amino acid substitutions on protein structure, stability, and dynamics, (4) direct efforts to design and engineer proteins and provide information for rational drug design, and (5) study the molecular mechanisms by which proteins fold into their biologically-active conformations. We are currently working on structure determination and refinement of several DNA-and RNA-binding proteins. We have recently determined solution structures of an IgG-binding domain of staphylococcal Protein A and of an RNA-binding protein from E.coli which is overproduced in response to cold shock (Cold Shock Protein A). We have characterized structural changes in these molecules which are required for binding to IgG proteins or to nucleic acids. Nuclear relaxation time measurements are used to characterize intramolecular motion in these small proteins. This research has important implications in the fields of protein physical chemistry, molecular design, receptor-ligand interactions, and oncogenesis. We are attempting to develop a general strategy for using structural analysis by NMR as a means of deciphering the biochemical functions of new genes identified in the human genome project.
FERNANDO J. MUZZIO
PhD, University of Massachusetts
Distinguished Professor
Department of Chemical and Biochemical Engineering

Phone: 732-445-3357 98 Brett Road
Fax: 732-445-6758 Room C126
E-mail: fjmuzzio@yahoo.com Piscataway, NJ 08854

Professor Muzzio’s research focuses on developing methods for determining how raw material properties and processing
conditions determine the structure and performance of structured organic materials, including pharmaceutical
products and devices. He is particularly interested in flow and mixing of liquids and liquid, powder flow and mixing,
and more recently, powder constitutive behavior (cohesion, shear-induced dilation).

VIKAS NANDA
PhD, John Hopkins University
Associate Professor
Department of Biochemistry

Phone: 732-235-5328 679 Hoes Lane
Fax: 732-235-4850 CABM Room 206
E-mail: nanda@cabm.rutgers.edu Piscataway, NJ 08854

Our group is interested in constructing new proteins for applications in biomedical research, nanotechnology and as
tools for understanding how proteins fold and evolve. Significant progress has been made in the last decade using
sophisticated computer programs to design proteins with novel folds and functions. We maintain and develop software
for protein design, structure prediction and docking of protein-ligand complexes. Several design projects our group
pursues include the computational design of an extracellular matrix, thermostabilization of peptide therapeutics with
D-amino acids and prediction of allergenicity of food proteins.

RONKE OLABISI
PhD, University of Wisconsin
Assistant Professor
Biomedical Engineering Department

Phone: 848-445-6687 599 Taylor Road
Fax: 732-445-3753 Room 209
E-mail: ronke.olabisi@rutgers.edu 2 Piscataway, NJ 08854

The research in our lab involves tissue engineering and regenerative medicine to repair or build de novo tissues for
treating defects due to injury, disease, aging, or spaceflight. Our approach is through the development of biosynthetic
materials, which combine the best aspects of synthetic and biological materials to attain reproducible biomaterials
that can drive or direct cell function. Current efforts focus on skin, orthopedic and retinal tissues.
HENRIK PEDERSEN
PhD, Yale University
Professor and Dean
Department of Chemical and Biochemical Engineering

Phone: 848-445-4795 98 Brett Road
Fax: 732-445-5516 Room C226
E-mail: hpederesen@sol.rutgers.edu Piscataway, NJ 08854

Plant cell culture. chemical and biochemical fiber optic sensors

Plant cell culture is an established technique for growing suspension cells of higher plants. Our research emphasizes cell cultures for production of valuable chemicals and for carrying out plant propagation through somatic embryogenesis. An overall goal is to biochemically and genetically understand such systems and rationally manipulate them for commercial benefit. In particular, experimental and theoretical analysis of the California poppy plant has been extensively investigated in our labs with emphasis on product extraction and other techniques for redirecting metabolite synthesis and transport. Additionally, a specific system for the development of somatic embryos from carrot suspension cultures in small bioreactor systems has been studied and we have found that embryogenesis is partly regulated by extracellular protein factors.

CHARLES M. ROTH
PhD, University of Delaware
Associate Professor
Department of Biomedical Engineering

Phone: 848-445-6686 599 Taylor Road
Fax: 732-445-3753 Room 205
E-mail: cmroth@rci.rutgers.edu Piscataway, NJ 08854

Gene-based therapeutics; bioinformatics and systems biology; hepatocyte differentiation; novel strategies for treatment of brain tumors

Our research involves the application of molecular and nanobioengineering approaches to cancer and to other biomedical problems. Much of our work centers on the development of technology for efficient gene silencing (using antisense or short interfering RNA). Current projects include: 1) novel lipid-polymer formulations for effective systemic and intracellular delivery of oligonucleotides; 2) silencing of osteogenic genes to prevent heterotopic ossification; 3) nanobioengineering of novel imaging agents toward image-guided tumor therapies; 4) understanding and targeting tumor stem cells; 5) surface and metabolic engineering of hepatocyte culture.

DAVID I. SHREIBER
PhD, University of Pennsylvania
Professor, Graduate Director
Department of Biomedical Engineering

Phone: 848-445-6589 599 Taylor Road
Fax: 732-445-3753 Room 312
E-mail: shreiber@rci.rutgers.edu Piscataway, NJ 08854

CNS injury mechanics, tissue engineering, nerve and spinal cord regeneration, acupuncture, microfluidics

Research foci include the multi-scale analysis of CNS injury mechanics; biomaterial, tissue, and cellular engineering approaches for repair and restoration of neural functions; a biophysical analysis of traditional acupuncture; and the development of technology for electropration that is grounded in electrohydrodynamic theory.
PATRICK J. SINKO

PhD, University of Michigan
Associate Vice President for Research
Distinguished Professor, Parke Davis Professor
Department of Pharmaceutics

Phone: 732-445-3831 x213
Fax: 732-445-4271
E-mail: sinko@rutgers.edu

160 Frelinghuysen Road
Room 213B
Piscataway, NJ 08854

Pharmaceutics and Drug Delivery

Dr. Sinko's research is primarily funded by NIH and focuses on the mechanisms and applications of biopharmaceutics and polymers to drug delivery and targeting. His laboratory is located in the Ernest Mario School of Pharmacy. His group's research efforts focus on the design, fabrication and evaluation of drug and diagnostic delivery technologies applied broadly to AIDS, cancer, and chemical counterterrorism.

STAVROULA SOFOU

PhD, Columbia University
Associate Professor
Department of Chemical and Biochemical Engineering

Phone: 848-445-65685
Fax: 732-445-3753
E-mail: Ss1763@rci.rutgers.edu

599 Taylor Rd
Room 219
Piscataway, NJ 08854

Biomembranes and Drug Delivery Systems

Our group works on Biomembranes and Drug Delivery Systems. We investigate the intermolecular and interfacial interactions determining the morphology and collective properties of self-assembling heterogeneous biomembranes. We use these materials to engineer lipid-based carriers of diagnostics and therapeutics for medical applications. Current projects include: environmentally responsive liposomes to improve transport and trafficking of chemotherapeutics in solid tumors, multifunctional liposomes for antivascular therapy, lipid-based carriers for targeted internal radiotherapy.

ANN M. STOCK

PhD, University of California
Professor
Department of Biochemistry

Phone: 732-235-4844
Fax: 732-235-5289
E-mail: stock@cabm.rutgers.edu

679 Hoes Lane
CABM Room 338
Piscataway, NJ 08854

Structure/function analysis of bacterial signal transduction pathways

Research in the Stock laboratory focuses on understanding the structure and function of signal transduction proteins and in particular, how covalent modifications regulate protein activities. All cells monitor their surrounding environments and elicit appropriate adaptive responses to changing conditions. Such stimulus-response coupling is essential for numerous and diverse processes such as growth and development, metabolic regulation and sensing. Signal transduction pathways, through which information is passed sequentially from one protein component to the next, provide the molecular mechanism for linking input signals to output responses. Despite great diversity in the types of stimuli and responses involved in different pathways, a limited number of fundamental molecular strategies are used for signal transduction. One such strategy is reversible covalent modification, which regulates the activities of proteins.
Brain Disorders

Dr. Sy's research group is interested in developing new strategies for treating brain disorders. The lab focuses on three main thrusts: medical device prototyping, biomaterials development for improved compatibility and drug delivery, and understanding fundamental glial cell physiology. Designing and fabricating medical device prototypes allows new avenues to bypass anatomical barriers using minimally invasive strategies. This opens the doorway to deliver compounds and newly synthesized drug delivery vehicles to the brain. These tools allow us to target neurological disorders but also afford the opportunity to study brain physiology. In particular, the Sy lab is interested in examining how glial cells - the half of the brain that are non-neuronal - modulate biocompatibility of brain implants and pharmacokinetics of compounds and drug delivery vehicles.

WILLIAM J. WELSH

PhD, University of Pennsylvania
Edelman Endowed Chair Professor
Department of Pharmacology

Telephone: 732-235-3234
Fax: 732-235-4073
E-mail: welshwj@rutgers.edu
675 Hoes Lane
Room 137
Piscataway, NJ 08854

Drug discovery, computer-aided molecular modeling and design, bioinformatics and cheminformatics

Our laboratory specializes in the development and application of computational tools for predictive toxicology and pharmaceutical drug discovery. Current projects include: novel opioid receptor active agents, novel Na K-ATPase inhibitors for the therapeutic treatment of cardiovascular disease, computer models for predicting the toxicology and environmental impact of chemicals, and discovery of novel anti-malarial agents.

LAWRENCE WILLIAMS

PhD, University of Arizona
Professor
Department of Chemistry and Chemical Biology

Telephone: (848) 445-7916
Fax: 732-445-5312
E-mail: lawjw@rci.rutgers.edu
610 Taylor Rd
Wright Riemann Labs 276
Piscataway, NJ 08854

Molecular structure and reactivity

Our research addresses a broad spectrum of problems at the interface of synthetic organic chemistry and biology. What inspires our work is the obsession with the idea that what has already been said about synthesis is still not enough. Thus in each of our projects we set out to demonstrate new - or to explore poorly understood - principles of chemical reactivity. Since we consider natural product total synthesis an opportunity to gain knowledge, our efforts in total synthesis are never finished they simply stop at interesting places.deals for predicting the toxicology and environmental impact of chemicals, and discovery of novel anti-malarial agents.

- 26 -
EILEEN WHITE

PhD, SUNY Stony Brook
Professor
Department of Molecular Biology and Biochemistry

Phone: 732-235-5329
Fax: 732-235-5795
E-mail: ewhite@cabm.rutgers.edu
679 Hoes Lane
CABM Room 140
Piscataway, NJ 08854

Apoptosis, Tumor growth control

Current research of the White Laboratory at Rutgers Cancer Institute of New Jersey has focused on translational research modulating the apoptosis pathway for cancer therapy and on the role of autophagy and cellular metabolism in cancer progression and treatment. The White group discovered that tumor cells activate the cellular self-cannibalization process of autophagy to survive the stress of tumor growth. This was the first demonstration that autophagy is a cancer survival mechanism for solid tumors and that inhibition of autophagy may be a novel approach to improve solid tumor therapy.

MARTIN L. YARMUSH

MD, Yale University, PhD, Rockefeller University; MIT
Paul and Mary Monroe Professor
Department of Biomedical Engineering

Phone: 848-445-6528
Fax: 732-445-3753
E-mail: yarmush@rci.rutgers.edu
599 Taylor Road
Room 231
Piscataway, NJ 08854

Tissue Engineering, regenerative medicine, metabolic engineering, applied immunology

The research activities in Professor Yarmush’s laboratory broadly address scientific and engineering aspects of various challenging areas in biotechnology and bioengineering. His lab is currently developing new nanoparticle technology to enhance wound healing and siRNA delivery; microfabricated tissue-on-a-chip-systems for drug and environmental toxin testing; pulsed electric field techniques to promote scarless wound healing and wound disinfection; liver organ re-engineering through recellularization of decellularized scaffolds and revitalization perfusion of marginal organs; supercooling preservation of cells, tissues, and organs; encapsulated mesenchymal stem cells for treatment of spinal cord injury, traumatic brain injury, and osteoarthritis; Autoantibody detection in cancer and other chronic diseases, tissue organoids for use in precision medicine, and development of an automated robotic venipuncture devices with point-of-care capabilities. Success in tackling these projects is enabled by the use of state-of-the-art techniques that include microfabrication and nanotechnology; physical biochemistry; genomics, proteomics and genetic engineering; cell biology and tissue engineering; advanced microscopic imaging; physiologic instrumentation; animal studies; and numerical simulation.
JEFFREY D. ZAHN
PhD, University California, Berkeley
Associate Professor
Department of Biomedical Engineering

Phone: 848-445-6587 599 Taylor Road
Fax: 732-445-3753 Room 311
E-mail: jdzahn@rci.rutgers.edu Piscataway, NJ 08854

Microfluidic devices for medical therapeutics and diagnostics

Dr. Zahn’s research is focused on the development of microfabricated and microfluidic devices which can be used during clinical diagnosis, health management and treatment of disease, as well as supporting and monitoring microscale cell cultures. By employing basic microfabrication techniques we have developed a number of devices which can assist in neuroengineering. His research combines modeling, device design, fabrication, and testing in an adaptive and iterative process for device optimization. Dr. Zahn’s current research projects include: multiphase microfluidics and electrohydrodynamics for DNA Purification, the use of transverse electrokinetics for DNA concentration, the development of blood separation and blood plasma biomarker analysis microdevices. a microfluidic high throughput cell electroporation platform, topographically patterned multielectrode arrays supporting neuron/myocyte cocultures, multiwell cell culture chambers to support mini-neurocircuitry models, and neuroprobes to minimize tissue damage and gliosis. His research has been supported by the ADA, NSF, New Jersey Commission on Spinal Cord Research, the Wallace H. Coulter Foundation and NIH.

MIKEL ZARATIEGUI
PhD, University of Navarra, Spain
Assistant Professor
Molecular Biology and Biochemistry

Phone: 848-445-1497 604 Allison Rd
Fax: 732-445-2447 Room 133
E-mail: mikel.zaretiegui@rutgers.edu Piscataway, NJ 08854

Chromatin Dynamics, Heterochromatin, RNA interference, Transposons, Silencing, Replication, Genome Integrity, Fission Yeast genetics

The combination of DNA with the protein complement that regulates it is known as chromatin. Depending on the degree of compaction of chromatin we can distinguish two forms of organization, Euchromatin and Heterochromatin. While Euchromatin is open and accessible, Heterochromatin is a specialized form of chromatin with a highly compacted structure. It covers regions of the genome that are highly repetitive, and by ensuring a high degree of compaction it prevents transcription as well as recombination of the repeat elements. These are very important functions because most repetitive parts of the genome are derived from transposons, selfish genetic elements capable of moving within the genome and increasing their copy number. These potentially harmful parasitic sequences must be silenced to avoid their rampant spread and the mutation and genomic instability that it can cause. The other main types of sequences coated by heterochromatin are highly repetitive arrays of elements called satellite DNA. Over the course of evolution, heterochromatic satellite regions have gained new roles in the chromosome. For example, the pericentric satellite DNA is necessary for proper chromosome segregation through its participation in centromere formation. Since repetitive DNA constitutes a large proportion of eukaryotic genomes, heterochromatin plays a key role in their function and evolution, and loss of its regulation can lead to cancer and aging-related diseases.